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a b s t r a c t

Mathematical modeling of sedimentation has attracted considerable attention in the past decades, and
nowadays, one of the most popular models of secondary settler in activated sludge processes is the one
proposed by Takács et al. [I. Takács, G.G. Patry, D. Nolasco, A dynamic model of the clarification-thickening
process, Water Res. 25 (10) (1991) 1263–1271]. This model is based on a discretization in finite volumes (or
layers) of the spatial domain, and in a rather inconsistent way, the number of layers is usually considered
as a model parameter chosen so as to fit experimental data. In this study, a simple convection–diffusion
partial differential equation (PDE) model is first formulated and solved using a Method of Lines strategy
arameter estimation
umerical techniques
astewater treatment

econdary settler
edimentation

allowing the use of various spatial discretization methods with largely improved accuracy and efficiency.
Model parameters are estimated using experimental data collected in batch settling experiments by De
Clercq [J. De Clercq, Batch and continuous settling of activated sludge: in-depth monitoring and 1D com-
pression modeling, Ph.D. Thesis, Universiteit Gent, Faculteit Ingenieurswetenschappen, Belgium, 2006],
showing the good model predictive capability. Finally, the PDE settler model is coupled with a stan-
dard ASM1 representation of the activated sludge process, and implemented in a MATLAB dynamic
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simulator.

. Introduction

The secondary settler is an important process unit in a wastew-
ter treatment plant as it allows the separation of the solid and
iquid phases. The solid particles accumulate in the lower part of
he settler and are partly recirculated to anoxic and aerobic tanks,
here they participate in the purification process following the
rinciple of the activated sludge process. On the other hand, clear
ater flows out of the tank. See Fig. 1.

The design of secondary settlers has long been based on
mpirical considerations[3]. A first physical model of batch sedi-
entation was developed by [16], in which the sludge transport is

escribed by a mass balance partial differential equation. Further
tudies introduced several model extensions in order to reproduce
xperimental observations: continuous settling [18], limitation of
he sedimentation flux from layer to layer [22,26], dispersion [11],

nd compression [12,17].

In today’s practice, Takács’ model [22] is by far the most widely
sed mathematical representation of the secondary settler in
ublished studies and commercial software environments. How-

∗ Corresponding author. Tel.: +32 65374141; fax: +32 65374136.
E-mail address: Alain.VandeWouwer@fpms.ac.be (A. Vande Wouwer).
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ver, recent studies (e.g. [15,19,25]) highlight several drawbacks of
his model, and in particular the fact that the number of discretiza-
ion layers is used as a model parameter in order to match the
xperimental observations. Indeed, a typical number of 10 layers is
sed to introduce (artificial) numerical diffusion and smooth off the
oncentration profiles. This model is therefore used without select-
ng a number of layers in agreement with numerical convergence
the number of layers should be selected large enough so that the
umerical solution to the mass balance equations is computed with
n acceptable accuracy) and without distinguishing model formu-
ation (i.e. the physical model parameters) and numerical solution
i.e. the number of layers or grid points in a numerical algorithm).

With the rapid advances in numerical methods and com-
utational techniques, partial differential equations (PDEs) can
owadays be solved routinely on modest computers. In particular,
he Method of Lines [20], which is a straightforward two-step
rocedure, where the PDEs are first discretized in space, then

ntegrated in time, can be used to solve the convection–diffusion
DE describing material transport in the secondary settler. Based

n such a simulation tool, the present study aims at estimating
he unknown model parameters, i.e. the parameters related to the
ettling velocity and dispersion effects, from batch experimental
ata available from [5,6]. The resulting settler model is then
oupled to the Activated Sludge Model 1 (ASM1) [13] to build a

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:Alain.VandeWouwer@fpms.ac.be
dx.doi.org/10.1016/j.cej.2008.05.038
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Fig. 1. Activated sludge process.

omplete simulator of the wastewater treatment plant. The code
s implemented in MATLAB based on a MOL library [23].

This paper is organized as follows. The next section presents a
imple convection–diffusion (i.e. parabolic) PDE of batch settling,
ighlighting the importance of the boundary conditions (i.e. the
onditions imposed at the secondary settler inlet and outlets). On
his basis, a numerical solution procedure based on the MOL is
eveloped in Section 3. In Section 4, model parameters are inferred
rom experimental data collected on a pilot plant [5–7]. A contin-
ous settling model is then coupled to an activated sludge model,

ncluding anoxic and aerobic tanks, and simulation results are dis-
ussed in Section 5. Finally, Section 6 draws some conclusions and
erspectives.

. Modeling of batch sedimentation

Mass balances allow the following partial differential equation
nd boundary conditions to be derived (more details on the deriva-
ion of the model PDE and boundary conditions can be found in
everal studies, including [5,7,8,16,18]:

∂C

∂t
= −∂(�sC)

∂z
+ D

∂2C

∂z2
(1)

At z = z0 : �sC − D
∂C

∂z
= 0;

At z = zL : �sC − D
∂C

∂z
= 0,

(2)
here C is the concentration in solid particles, �s is the settling
elocity, and D is the dispersion coefficient. The boundary condi-
ions simply express the fact that the material flux at the system
oundaries are equal to zero in batch mode.

able 1
arameter estimation based on the three available experiments

esidual cost function “3670–6120–7290”

∗ 6.184 × 109

ariance and standard deviation “3670–6120–7290”

2 440520
663

9% confidence interval “3670–6120–7290”

± 2.58 × � y ± 1712

arameters and 99% confidence intervals “3670–6120–7290”

0 ± 2.58��0 16.982 ± 0.0074
′
0 ± 2.58��′

0
195.031 ± ∞

p ± 2.58�rp (16.018 ± 189.828) × 10−3

h ± 2.58�rh (4.942 ± 3.992) × 10−4

± 2.58�D (10.724 ± 4.100) × 10−2

orrelation coefficients “3670–6120–7290”

�0,rp −0.542
�0,rh 0.125

�0,D 0.519

rp,rh −0.002

rp,D −0.015

rh,D −0.033
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Different initial conditions can arise, but in laboratory
xperiments, a (at least approximately) constant initial distribution
s usually achieved by mixing, i.e. C(t = 0) = C0.

The settling velocity law �s can be formulated in several ways
see [10]). In this work, Takács formulation [22] is chosen:

s(C) = max(0, min(�′
0, �0 (e−rh(C−Cmin) − e−rp(C−Cmin)))) (3)

his double exponential (see Fig. 2) contains five parameters:

�0 is the theoretical maximum velocity [m/h], obtained at the
intersection of the �s vertical axis and the extension of the right
exponential curve;
�′

0 is the practical maximum velocity [m/h];
Cmin is the minimum concentration below which the settling
velocity vanishes [g/m3];
rh determines the particle behavior for increasing particle den-
sity;
rp determines the particle behavior at weak concentration values.

These parameters are a priori unknown and have to be estimated
rom experimental data. In this study, initial parameters values are
aken from [4]; see Table 3 and Fig. 2.

. Method of Lines (MOL) strategy

Consider the PDE problem

t = f (z, t, x, xz, xzz), z ∈ �, t ≥ 0 (4)

= b(z, t, x, xz), z ∈ �, t > 0 (5)

(t = 0, z) = x0(z), z ∈ � ∪ � (6)

here x ∈ �npde is the vector of dependent variables (e.g. con-
entration), z is the spatial coordinate, and t is the time. A
ubscript notation is used for the several partial derivatives, i.e. xt =
x/∂t, xz = ∂x/∂z. Eqs. (4)–(6) represent a system of PDEs defined
n a spatial domain �, their associated boundary conditions (BCs)
efined on the boundary surface � of �, and initial conditions (ICs)
efined on the complete spatial domain.

One of the most popular approaches to the numerical solution
f PDE models is the Method of Lines [20], which proceeds in two
eparate steps:
approximation of the spatial derivatives using finite difference,
finite element or finite volume techniques;
time integration of the resulting semi-discrete (discrete in space,
but continuous in time) equations using an appropriate solver.

Fig. 2. Settling velocity law.
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ig. 3. Direct validation: temporal evolution of the concentration profiles for experi
ent data (black dots), measurement confidence interval (yellow), model predictio

s referred to the web version of the article.)
The success of the MOL stems from its simplicity of implementa-
ion and the availability of high-quality time integrators for solving
wide range of problems, including ordinary differential equations

ODEs), and mixed systems of algebraic and ordinary differential

e
e

d

with C0 = 3670 (top), C0 = 6120 (center) and C0 = 7290 (bottom) g/m3. Measure-
line). (For interpretation of the references to color in this figure legend, the reader
quations (AEs and ODEs forming a system of differential-algebraic
quations—DAEs).

In particular, the authors Vande Wouwer et al. [23] have recently
eveloped a MATLAB library for the MOL, called MATMOL, in which



R. David et al. / Chemical Engineering Journal 146 (2009) 174–183 177

C0 =

fi
i
i

x

x

·

S
o

x

0

x

w
i
O
i

m

x

f
o

Fig. 4. Iso-concentration curves from the experiment corresponding to

nite differences (or other techniques such as spectral methods, but
n the continuation of this article attention is focused on FDs) are
mplemented using the concept of a differentiation matrix D, i.e.

˜z = D1x̃ (7)

˜zz = D2x̃ (8)

· · (9)

ubstitution of (7)–(9) into (4) and (5) yields a semi-discrete ODE
r DAE system
˜t = f (z, t, x̃, x̃z, x̃zz), z ∈ �, t ≥ 0 (10)

= b(z, t, x̃, x̃z), z ∈ �, t > 0 (11)

˜(t = 0, z) = x0(z), z ∈ � ∪ � (12)

c
U
m
[
s

3670 g/m3, and predicted iso-concentration curves (direct validation).

here x̃ is the approximate solution. This ODE/DAE system can be
ntegrated in time using one of the solvers available in the MATLAB
DE Suite [21], e.g. ode15s (which is suitable for stiff ODEs and

ndex 1 DAEs).
For convective PDE problems, as it is the case in sedimentation

odeling, upwind finite difference schemes such as

˜z(zi) = (−x(zi−3) + 6x(zi−2) − 18x(zi−1) + 10x(zi) + 3x(zi+1))
12 �z

(13)

or a flow from left to right, work very effectively and avoid spuri-
us oscillations as generated by centered FDs (which are a standard

hoice for dispersion terms which have no preferential direction).
pwind schemes with various orders of accuracy have been imple-
ented in MATLAB, either on uniform grids or on nonuniform grids

24]. More details on the use of finite difference schemes for settler
imulation can also be found in [2].
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Table 2
Parameter estimation based on two experiments

Residual cost function “3670–6120” “3670–7290” “6120–7290”

J∗ 4.141 × 109 2.472 × 109 4.051 × 109

Variances and standard deviations “3670–6120” “3670–7290” “6120–7290”

�2 442558 264186 434668
� 665 514 659

99% confidence interval “3670–6120” “3670–7290” “6120–7290”

y ± 2.58 × � y ± 1716 y ± 1326 y ± 1701

Parameters and 99% confidence intervals “3670–6120” “3670–7290” “6120–7290”

�0 ± 2.58��0 16.617 ± 0.00004 19.815 ± 0.023 24.889 ± 0.000009
�′

0 ± 2.58��′
0

12.250 ± 0.00004 16.817 ± ∞ 11.875 ± 0.000009

rp ± 2.58�rp (6.149 ± 0.075) × 10−3 (2.063 ± 108.873) × 10−3 (5.339 ± 0.008) × 10−3

rh ± 2.58�rh (4.861 ± 0.596) × 10−4 (5.459 ± 99.434) × 10−4 (5.344 ± 0.048) × 10−4

D ± 2.58�D (13.146 ± 0.010) × 10−2 (8.243 ± 3.618) × 10−2 (8.058 ± 0.0008) × 10−2

Correlation coefficients “3670–6120” “3670–7290” “6120–7290”

��0,�′
0

−0.497 – −0.022

��0,rp −0.287 −0.392 −0.673
��0,rh −0.373 0.971 0.021
��0,D 0.145 −0.231 −0.751

��′
0

,rp −0.020 – −0.117

��′
0

,rh
−0.306 – −0.994

��′
0

,D 0.102 – −0.058
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rp,rh 0.362

rp,D −0.197

rh,D −0.453

. Parameter estimation

Sedimentation can be studied at laboratory scale using a column
lled with well mixed suspension. In [5,6], several experiments
ave been carried out with different sludge types using radioactive
racers and clinical scanner equipment. In the following, three
ata sets based on sludge coming from a wastewater treatment
lant in Deinze, Belgium, are considered. The corresponding initial
oncentrations are uniform and respectively equal to 3670, 6120
nd 7290 g/m3. The experimental data are used to estimate the

′
umerical values of the main model parameters, i.e, �0, �0, rp, rh
nd D (Cmin is not identifiable as its value is very small compared
o the concentration values recorded in the experiments), by

inimizing a cost function measuring the deviation between the
odel prediction and the measured data.

able 3
arameters values of Takács settling velocity law [4], settler characteristics from [15]
nd diffusion coefficient from [11]

s parameters Values Units

0 19.75 [m/h]
′
0 10.42 [m/h]

p 2.86 × 10−3 [m3/g]

h 5.76 × 10−4 [m3/g]
ns (Cmin = fns Cf) 2.28 × 10−3

ettler characteristics Values Units

500 [m2]
epth zL 4 [m]
eed level zf 1.8 [m]

f 450 [m3/h]
u 200 [m3/h]
e 250 [m3/g]

iffusion coefficient Value Unit

0.542 [m2/h]

e

m

u

F
c

−0.301 0.113
−0.273 −0.229

−0.148 −0.063

In the construction of this cost function, the data at the column
nds are disregarded because of the presence of a stirrer (used to
btain an almost uniform initial concentration) and because of the
ludge compression phenomenon at the bottom of the column,
hich is not described in our simple mass balance model (for more

nsight in the compression phenomenon, see, e.g. [7]). Despite
his precaution, the number of available data remains quite large
ompared to the number of parameters (the ratio of the number
f data points to the number of unknown parameters is about
00 for each experiment). Based on N data points, the parameter
stimation problem can be stated as

N

in
	

J(	) = min
	

∑
i=1

(
yi − ŷi(	)

)2
, (14)

nder positivity constraints on the n	 physical parameters 	.

ig. 5. Secondary settler subdivided in two zones, with the volumetric flow rates
orresponding to the feed (Qf), the clear water outlet (Qe) and the sludge outlet (Qu).
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Fig. 6. Dynamic evolution of the concentration profile using a MOL str

In this expression, yi denotes the measured data and ŷi(	) the
odel prediction, which depends on the set of unknown parame-

ers 	 (via the solution of the model equations).
As the minimization problem is nonlinear and therefore prone

o local minima, two artifices are used:

a multistart strategy is used in which the parameter estimation
procedure is started from randomly chosen initial parameter
guesses so as to explore the parameter space and recognize the
existence of local minima;

the minimization of the cost function is initially carried out
using a gradient-free optimization method, e.g. Nelder–Mead
method as implemented in the MATLAB function fminsearch,
followed by a minimization using a gradient-based method
such as Levenberg–Marquardt method as implemented in the

e
m
r
c

Fig. 7. Dynamic evolution of the concentration profile using the model
with nI = 95 and nII = 116 (parameters from [4] and Cf = 6000 g/m3).

MATLAB function lsqnonlin. The gradient-free method is usually
less sensitive to the presence of local minima and allows a more
“global” approach.

In order to analyse the information content of the data, different
ata combinations are used: (a) the three available experiments
re used for parameter estimation or (b) two experiments out of
hree are used for parameter estimation, whereas the third one is
sed for model cross-validation.
In all these cases, the quality of the parameter estimates is
valuated by examining the value of the cost function at the opti-
um J(	∗), by graphical inspection of direct and cross-validation

esults (when some experiments are left for this purpose as in
ase (b) above), and by the evaluation of Fisher Information Matrix

of Takács with n = 10 (parameters from [4] and Cf = 6000 g/m3).
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FIM) at the optimum:

(	∗) =
(

∂ŷ(	)
∂	

)T

	=	∗
· 
−1 ·

(
∂ŷ(	)

∂	

)
	=	∗

, (15)

here (∂ŷ(	)/∂	) is the sensitivity matrix of the model outputs at
ach sampling instant with respect to the model parameters 	 (this
ensitivity matrix is therefore a N × n	 matrix). Often this matrix
s a by-product of gradient-based optimization methods, such as

he ones implemented in the MATLAB function lsqnonlin. 
 is the
ovariance matrix of the measurement errors (which is a N × N
atrix), which is a priori unknown. If it is assumed that the con-

entration measurements along the column are independent, and
ave constant absolute errors, then this matrix can be simplified

�

�

ig. 9. Concentration profile evolution during the first instants (every 15 min) of simulatio
Takács” with grey line (n = 10).
the activated sludge process.

o a diagonal matrix whose diagonal elements are given by [1]:

ˆ 2 = J(	∗)
N − n	

, (16)

he FIM provides a lower bound of the variance-covariance matrix
f the parameter errors

	(	) ≥ F−1(	) (17)

rom the FIM, the standard deviations of the parameter errors and
orrelation coefficients can be deduced as
i,	 =
√

�2
ii,	

(18)

ij,	 = �ij,	

�i,	 · �j,	
(19)

n with constant inputs. Settler “MOL” with dark line (nI = 91 and nII = 111), settler
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Fig. 10. State variable evolution in the anoxic tank for the weather seque

able 1 shows the estimation results based on the three available
xperiments. It is apparent that �′

0 is not identifiable (the parameter
ensitivity at the optimum vanishes and therefore the associated
ncertainty is high) and that the estimated confidence interval
n rp is quite large. Nevertheless, the direct validation results are

cceptable, as shown in Fig. 3 and 4. Fig. 3 shows the temporal evo-
ution of the concentration profiles and compares the experimental
ata with the model prediction, highlighting the confidence inter-
als of the data points that have been used for parameter estimation

e
l
a
a

Fig. 11. State variable evolution in the aerobic tank for the weather sequence “S
torm–Rain”. Black line: Settler “PDE + MOL”, Grey line: Settler “Takács”.

i.e. excluding the two end regions where unmodelled perturba-
ions occur). Fig. 4 compares the evolution of the isoconcentration
urves for the experiments corresponding to C0 = 3670 g/m3.

Table 2 shows the estimation results based on two experiments,
eeping the other for cross-validation. Even though the use of

xperiments corresponding to C0 = 3670 and C0 = 7290 g/m3

eads to a smaller value of the cost function at the optimum,
gain �′

0 is not identifiable and the confidence interval on rp,
nd more embarrassingly on rh, are very large, which is not

torm–Rain”. Black line: Settler “PDE + MOL”, Grey line: Settler “Takács”.
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cceptable. The best combination of experiments is therefore given
y C0 = 3670 − C0 = 6120 or C0 = 6120 − C0 = 7290. Obviously, it
s difficult to find a unique set of parameters describing the three
xperiments, due to the large difference in initial concentration
nd the presence of relatively large measurement errors (noisy
ata) for experiments carried out at larger concentrations (where

t is difficult to achieve good mixing conditions and a uniform
oncentration at the initial time).

These results demonstrate the predictive capability of the
odel, and the challenge associated to an accurate estimation of

he model parameters based on experimental data. Even though
he simple mass balance model does not take account of the sludge
ccumulation at the bottom of the tank and the compression effects,
t seems appropriate for a macroscopic view of the secondary set-
ler. A more detailed study of sludge accumulation and compression
equires the consideration of a momentum balance as introduced
n [5].

. Dynamic simulation of the activated sludge process

Based on the batch sedimentation model developed in the
revious sections, a simple partial differential equation model of
ontinuous settling and its associated MOL solution are presented,
sing the parameter set from Table 3[4]. Simulation results are
ompared with those produced by a standard layer representation,
ogether with a flux limiting approach as recommended in [22].
inally, our PDE model is coupled with the ASM1 representation of
he activated sludge process, so as to produce a complete dynamic
imulator. The code is developed using MATLAB and is available on
equest from the authors.

.1. A simple secondary settler model and simulation code

In order to study continuous settling (Fig. 5), the settler is
ivided in two zones I and II, corresponding respectively to the zone
etween the clear water outlet (z0) and the feed level (zf) and to the
one between the feed level and the sludge outlet (zL).

The mathematical model and boundary conditions then become

∂CI

∂t
= −∂(�s,ICI − qeCI)

∂zI
+ DI

∂2CI

∂z2
I

(20)

∂CII

∂t
= −∂(�s,IICII + qu CII)

∂zII
+ DII

∂2CII

∂z2
II

(21)

At z0 : �s,ICI − DI
∂CI

∂zI
= 0;

At zf :

{
CI = qf Cf

qu + qe
;

CII = CI;

At zL : �s,II CII − DII
∂CII

∂zII
= 0.

(22)

The boundary conditions now express the fact that the sedi-
entation and dispersion fluxes at the clear water outlet and at

he sludge outlet vanish. The boundary condition at the feed level
s simply a balance of material fluxes and a continuity condition for
he particle concentration.

Consider an initially empty settler (process start-up phase). The
nitial conditions are then given by :
I(t = 0, zI) = 0 and CII(t = 0, zII) = 0. (23)

or numerical simulation, zones I and II are spatially discretized
sing nI and nII grid points. Finite difference schemes and a MOL
pproach are used to produce the results displayed in Fig. 6, which

s
u
t

(

ig. 12. Concentration evolution at the clear water outlet (Ce), at the feed level (Cf)
nd at the sludge outlet (Cu) for the weather sequence “Storm–Rain”. Black line:
ettler “PDE + MOL”, Grey line: Settler “Takács”.

hows space-time evolutions corresponding to a feed concentra-
ion Cf = 6000 g/m3. The computational load on a standard PC is
ery modest (for instance, with a PC Intel Centrino 1.73 GHz and 1
B RAM, a simulation of 1000 h of the settlers discretized using a

otal of 213 nodes takes about 20 s). For comparison purposes, Fig. 7
hows dynamic simulation results obtained with Takács’ model
sing the same parameter values for the settling velocity law and
nder the same operating conditions. Classically, the settler is sub-
ivided in 10 layers and a flux limitation from layer to layer is used
s detailed in [22]. These simulation results differ significantly.
hereas the PDE model represents a properly working settler,

akács’ model predicts overload (saturation) conditions. There
re several reasons for these discrepancies, including the crude
iscretization in a few layers only (10 layers is the typical number
ecommended in the literature), the flux limitation scheme, and
he incorrect formulation of the boundary conditions in Takács’

odel (an analysis of the pitfalls of Takács’ model can be found in
14,15]). As a consequence, it would be necessary to re-estimate
he parameters of the settling velocity law in Takács’ model and

aybe adapt the number of layers so as to have a better agreement.
owever, this would be only a partial, ad-hoc, solution.

.2. The resulting simulator

In a way similar to [9], the PDE settler model can be coupled to
he ASM1 representation [13] of the actiated sludge process as illus-
rated in Fig. 8. Figs. 9–12 show simulation results over a period of
8 days with a sequence of stormy–rainy weather (as suggested in
4]) and highlight the deviation between the prediction of the sim-
lator based on the PDE settler model (with MOL solution) and the
ne based on Takács’ model. The model of Takács predicts smaller
oncentration values Cu at the sludge outlet, so that the particulate
omponents achieve smaller concentrations in the activated sludge
rocess. The sludge concentration Cu is also more variable in Takács’
odel, and somewhat unexpectedly, these variations seem to be in

pposition with the variations of the feed concentration.
As mentioned in the previous section, these deviations could be

educed by retuning the settler model parameters (in the simula-
ion runs considered here, the parameter set is the same for both

odels). Again, this is an artificial procedure, and it is important to
tress the lack of coherence of Takács’ model (crude discretization

sed as an artificial numerical dispersion, flux limitation from layer
o layer, incorrect boundary conditions).

The simulation time of the complete simulator is very modest
about 6 min on a standard PC).
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. Conclusions

In this study, a simple mass balance PDE model of continuous
ettling is described, and the unknown model parameters (asso-
iated to dispersion effects and settling velocity) are estimated by
inimizing the deviation between model prediction and experi-
ental data borrowed from [5,6]. The PDE model is very efficiently

olved using a Method of Lines strategy and produces realistic con-
entration evolutions. Finally, the PDE settler model is coupled to a
tandard ASM1 representation of the activated sludge process and
mplemented in a MATLAB simulator, which is available on request
rom the authors.
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